Search results

1 – 10 of 936
Article
Publication date: 17 October 2022

Santosh Kumar B. and Krishna Kumar E.

Deep learning techniques are unavoidable in a variety of domains such as health care, computer vision, cyber-security and so on. These algorithms demand high data transfers but…

50

Abstract

Purpose

Deep learning techniques are unavoidable in a variety of domains such as health care, computer vision, cyber-security and so on. These algorithms demand high data transfers but require bottlenecks in achieving the high speed and low latency synchronization while being implemented in the real hardware architectures. Though direct memory access controller (DMAC) has gained a brighter light of research for achieving bulk data transfers, existing direct memory access (DMA) systems continue to face the challenges of achieving high-speed communication. The purpose of this study is to develop an adaptive-configured DMA architecture for bulk data transfer with high throughput and less time-delayed computation.

Design/methodology/approach

The proposed methodology consists of a heterogeneous computing system integrated with specialized hardware and software. For the hardware, the authors propose an field programmable gate array (FPGA)-based DMAC, which transfers the data to the graphics processing unit (GPU) using PCI-Express. The workload characterization technique is designed using Python software and is implementable for the advanced risk machine Cortex architecture with a suitable communication interface. This module offloads the input streams of data to the FPGA and initiates the FPGA for the control flow of data to the GPU that can achieve efficient processing.

Findings

This paper presents an evaluation of a configurable workload-based DMA controller for collecting the data from the input devices and concurrently applying it to the GPU architecture, bypassing the hardware and software extraneous copies and bottlenecks via PCI Express. It also investigates the usage of adaptive DMA memory buffer allocation and workload characterization techniques. The proposed DMA architecture is compared with the other existing DMA architectures in which the performance of the proposed DMAC outperforms traditional DMA by achieving 96% throughput and 50% less latency synchronization.

Originality/value

The proposed gated recurrent unit has produced 95.6% accuracy in characterization of the workloads into heavy, medium and normal. The proposed model has outperformed the other algorithms and proves its strength for workload characterization.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 2 January 2018

N. Aswini, E. Krishna Kumar and S.V. Uma

The purpose of this paper is to provide an overview of unmanned aerial vehicle (UAV) developments, types, the major functional components of UAV, challenges, and trends of UAVs…

1070

Abstract

Purpose

The purpose of this paper is to provide an overview of unmanned aerial vehicle (UAV) developments, types, the major functional components of UAV, challenges, and trends of UAVs, and among the various challenges, the authors are concentrating more on obstacle sensing methods. This also highlights the scope of on-board vision-based obstacle sensing for miniature UAVs.

Design/methodology/approach

The paper initially discusses the basic functional elements of UAV, then considers the different challenges faced by UAV designers. The authors have narrowed down the study on obstacle detection and sensing methods for autonomous operation.

Findings

Among the various existing obstacle sensing techniques, on-board vision-based obstacle detection has better scope in the future requirements of miniature UAVs to make it completely autonomous.

Originality/value

The paper gives original review points by doing a thorough literature survey on various obstacle sensing techniques used for UAVs.

Details

International Journal of Intelligent Unmanned Systems, vol. 6 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 March 2022

Santosh Kumar B. and Krishna Kumar E.

In real-time entertainment processing applications, processing of the multiple data streams demands high efficient multiple transfers, which leads to the computational overhead…

Abstract

Purpose

In real-time entertainment processing applications, processing of the multiple data streams demands high efficient multiple transfers, which leads to the computational overhead for system-on-chip (SoC), which runs the artificial intelligence algorithms. High-performance direct memory access controller (DMAC) is incorporated in SoC to perform the multiple data transfers without the participation of main processors. But achieving the area-efficient and power-aware DMAC suitable for streaming the multiple data remains to be a daunting challenge among the researchers.

Design/methodology/approach

The purpose of this paper to provide the DMA operations without intervention of central processing unit (CPU) for bulk video data transmissions.

Findings

The proposed DMAC has been developed based on the hybrid advanced extensible interface (AXI)-PCI bus subsystem to handle the multiple data streams from the video sources. The proposed model consists of bus selector module, user control signal, status register, DMA-supported address and AXI-PCI subsystems to achieve better performance in analysing the video frames.

Originality/value

The extensive experimentation is carried out with Xilinx Zynq SoC architecture using Very High Speed integrated circuit hardware description language (VHDL) programming, and performance metrics such as utilization area and power are calculated and compared with the other existing DMA controllers such as Scatter-DMA, Gather-DMA and Enhanced DMA. Simulation results demonstrate that the proposed DMAC has outperformed other existing DMAC in terms of less area, less delay and power, which makes the proposed model suitable for streaming multiple video streams.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Content available
Book part
Publication date: 26 November 2012

Abstract

Details

Research in Labor Economics
Type: Book
ISBN: 978-1-78190-358-2

Article
Publication date: 7 January 2019

Ravinder Singh and Kuldeep Singh Nagla

An efficient perception of the complex environment is the foremost requirement in mobile robotics. At present, the utilization of glass as a glass wall and automated transparent…

Abstract

Purpose

An efficient perception of the complex environment is the foremost requirement in mobile robotics. At present, the utilization of glass as a glass wall and automated transparent door in the modern building has become a highlight feature for interior decoration, which has resulted in the wrong perception of the environment by various range sensors. The perception generated by multi-data sensor fusion (MDSF) of sonar and laser is fairly consistent to detect glass but is still affected by the issues such as sensor inaccuracies, sensor reliability, scan mismatching due to glass, sensor model, probabilistic approaches for sensor fusion, sensor registration, etc. The paper aims to discuss these issues.

Design/methodology/approach

This paper presents a modified framework – Advanced Laser and Sonar Framework (ALSF) – to fuse the sensory information of a laser scanner and sonar to reduce the uncertainty caused by glass in an environment by selecting the optimal range information corresponding to a selected threshold value. In the proposed approach, the conventional sonar sensor model is also modified to reduce the wrong perception in sonar as an outcome of the diverse range measurement. The laser scan matching algorithm is also modified by taking out the small cluster of laser point (w.r.t. range information) to get efficient perception.

Findings

The probability of the occupied cells w.r.t. the modified sonar sensor model becomes consistent corresponding to diverse sonar range measurement. The scan matching technique is also modified to reduce the uncertainty caused by glass and high computational load for the efficient and fast pose estimation of the laser sensor/mobile robot to generate robust mapping. These stated modifications are linked with the proposed ALSF technique to reduce the uncertainty caused by glass, inconsistent probabilities and high load computation during the generation of occupancy grid mapping with MDSF. Various real-world experiments are performed with the implementation of the proposed approach on a mobile robot fitted with laser and sonar, and the obtained results are qualitatively and quantitatively compared with conventional approaches.

Originality/value

The proposed ASIF approach generates efficient perception of the complex environment contains glass and can be implemented for various robotics applications.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Book part
Publication date: 14 March 2024

Larissa Becker and Eduardo Rech

Customer experience is increasingly recognized as a source of competitive advantage. Customer experience refers to customers' responses and reactions to cues within touchpoints…

Abstract

Customer experience is increasingly recognized as a source of competitive advantage. Customer experience refers to customers' responses and reactions to cues within touchpoints along customer journeys. Nowadays, customers often interact with online touchpoints – such as social media, websites, or e-commerce – in their customer journeys. Given that customer experience is multidimensional, this chapter addresses the following question: How can sensorial experiences be triggered in online touchpoints? Based on a review of the literature on customer experience and sensory marketing, four challenges in triggering sensorial experiences in online touchpoints are identified: (1) limited sensorial cues, (2) lack of thematic congruence between online and offline touchpoints, (3) sensory overload, and (4) lesser control over sensorial cues. Then, two routes through which organizations can trigger sensorial experiences in online touchpoints are proposed: (1) directly influencing sensations through sensory-enabling technologies, and (2) indirectly influencing sensorial perceptions through the use of sensory and nonsensory cues. The chapter closes with a presentation of a model that describes the process of triggering sensorial experiences in online touchpoints as well as a checklist of relevant questions for practitioners who wish to do so.

Details

The Impact of Digitalization on Current Marketing Strategies
Type: Book
ISBN: 978-1-83753-686-3

Keywords

Article
Publication date: 30 May 2023

Pushpesh Pant, Pradeep Rathore, Krishna kumar Dadsena and Bhaskar Shandilya

This study examines the performance effect of working capital for a large sample of Indian manufacturing firms in light of supply chain disruption, i.e. the COVID-19 pandemic.

Abstract

Purpose

This study examines the performance effect of working capital for a large sample of Indian manufacturing firms in light of supply chain disruption, i.e. the COVID-19 pandemic.

Design/methodology/approach

This study is based on secondary data collected from the Prowess database on Indian manufacturing firms listed on the Bombay Stock Exchange (BSE) 500. Panel data regression analyses are used to estimate all models. Moreover, this study has employed robust standard errors to consider for heteroscedasticity concerns.

Findings

The results challenge the current notion of working capital investment and reveal that higher working capital has a positive and significant impact on firm performance. Further, it highlights that Indian manufacturing firms suffered financially post-COVID-19 as they significantly lack the working capital to run day-to-day operations.

Originality/value

This research contributes to the scant literature by examining the association between working capital financing and firm performance in light of the COVID-19 pandemic, representing typical developing economies like India.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Deepika Parmar, S.V.S.S.N.V.G. Krishna Murthy, B.V. Rathish Kumar and Sumant Kumar

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures…

Abstract

Purpose

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures, such as triangle, L-shape and square-containing wavy surfaces. These porous enclosures are saturated with Cu-water nanofluid and subjected to the influence of a uniform magnetic field.

Design/methodology/approach

In the present study, Darcy’s model is used for the momentum transport equation in the porous matrix. Additionally, the Caputo time fractional derivative is introduced in the energy equation to assess the heat transfer phenomenon. Furthermore, the total entropy generation has been computed by combining the entropy generation due to fluid friction (Sff), heat transfer (Sht) and magnetic field (Smf). The complete mathematical model is further simulated using the penalty finite element method, and the Caputo time derivative term is approximated using the L1 scheme. The study is conducted for various ranges of the Rayleigh number (102Ra104), Hartmann number (0Ha20) and fractional order parameter (0<α<1) with respect to time.

Findings

It has been observed that the fractional order parameter α governs the characteristics of entropy generation and heat transfer within the selected range of parameters. The Bejan number associated with heat transfer (Beht), fluid friction (Beff) and magnetic field (Bemf) further demonstrate the dominance of flow irreversibilities. It becomes evident that the initial evolution state of streamlines, isotherms and local entropy varies according to the choice of α. Additionally, increasing Ra values from 102 to 104 shows that the heat transfer rate increases by 123.8% for a square wavy enclosure, 7.4% for a triangle enclosure and 69.6% for an L-shape enclosure. Moreover, an increase in the value of Ha leads to a reduction in heat transfer rates and entropy generation. In this case, Bemf1 shows the dominance of the magnetic field irreversibility in the total entropy generation.

Practical implications

Recently, fractional-order models have been widely used to express numerous physical phenomena, such as anomalous diffusion and dispersion in complex viscoelastic porous media. These models offer a more accurate representation of physical reality that classical models fail to capture; this is why they find a broad range of applications in science and engineering.

Originality/value

The fractional derivative model is used to illustrate the flow pattern, heat transfer and entropy-generating characteristics under the influence of a magnetic field. Furthermore, to the best of the author’s knowledge, a fractional-derivative-based mathematical model for the entropy generation phenomenon in complex porous enclosures has not been previously developed or studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2021

Anil Kumar Budati, Ganesh Snv, Kumar Cherukupalli, Anil Kumar P. and Venkata Krishna Moorthy T.

The privacy of the information is a major challenge in the communication process. In the present modern generation, the cryptography plays a vital role in providing security for…

Abstract

Purpose

The privacy of the information is a major challenge in the communication process. In the present modern generation, the cryptography plays a vital role in providing security for data, such as text, images and video while transmitting from source to destination through internet or intranet. The Rivest-Shamir-Adleman (RSA) is an asymmetric key cryptographic system, where the security of the method works on the strength of the key.

Design/methodology/approach

In an asymmetric key crypto system, a pair of keys is generated one public key for encryption and one private key for decryption. The major challenge of implementing the RSA is the power function which becomes tedious and time consuming as the exponential value increases. The Chinese remainder theorem proves to be the best for data encryption when it comes to execution time of the algorithm. The proposed novel RSA algorithm with lookup table (LUT) is an extension to the Chinese remainder algorithm, which works better for image and video in terms of time complexity.

Findings

This paper presents a LUT approach for implementing the RSA with a minimal processing time. The proposed algorithm was compared with the standard algorithms like, Chinese remainder theorem, binary approach and squared multiplication approach. As the size of the exponent value increases, the proposed method shows better performance compared to other standard methods.

Originality/value

This paper presents a LUT approach for implementing the RSA with a minimal processing time. The proposed algorithm was compared with the standard algorithms like, Chinese remainder theorem, binary approach and squared multiplication approach. As the size of the exponent value increases, the proposed method shows better performance compared to other standard methods.

Details

Circuit World, vol. 47 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 936